organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Carvedilol dihydrogen phosphate hemihydrate: a powder study

Vladimir V. Chernyshev,^a* Alexandre A. Machula,^b Sergei Yu. Kukushkin^b and Yurii A. Velikodny^a

^aDepartment of Chemistry, Moscow State University, 119991 Moscow, Russian Federation, and ^b/BION Ltd', 109 km. Kiev Highway, Obninsk 249032, Kaluga Region, Russian Federation Correspondence e-mail: vladimir@struct.chem.msu.ru

Received 14 July 2009; accepted 23 July 2009

Key indicators: powder X-ray study; T = 295 K; mean σ (C–C) = 0.034 Å; R factor = 0.026; wR factor = 0.035; data-to-parameter ratio = 8.6.

In the cation of the title compound [systematic name: 3-(9Hcarbazol-4-yloxy)-2-hydroxy-N-[2-(2-methoxyphenoxy)ethyl]propan-1-aminium dihydrogen phosphate hemihydrate], $C_{24}H_{27}N_2O_4^+ H_2PO_4^- 0.5H_2O$, the mean planes of the tricyclic ring system and the benzene ring form a dihedral angle of $87.2 (2)^{\circ}$. In the crystal structure, the solvent water molecule is situated on a twofold rotation axis linking two cations via O- $H \cdots O$ and $N - H \cdots O$ hydrogen bonds. The anions contribute to the formation $O-H \cdots O$ and $N-H \cdots O$ hydrogen bonds between the anions and cations, which consolidate the crystal packing.

Related literature

For the synthesis of the title compound, claimed as Form I, see: Brook et al. (2005). For the crystal structures of two polymorphs of the carvedilol free base, see: Chen et al. (1998); Yathirajan et al. (2007). For details of the indexing algorithm, see: Visser (1969). The methodology of bond-restrained Rietveld refinement used in this study was the same as described by Chernyshev et al. (2003).

Experimental

Crystal data

 $C_{24}H_{27}N_2O_4^+ \cdot H_2PO_4^- \cdot 0.5H_2O_4^- \cdot 0.5H_2O$ $M_r = 513.47$ Monoclinic, C2/c a = 26.600 (2) Åb = 12.3767 (12) Åc = 16.5101 (15) Å $\beta = 106.662 (11)^{\circ}$ V = 5207.2 (8) Å³ Z = 8

Data collection

```
Guinier G670 image plate camera
Specimen mounting: thin layer in
  the specimen holder of the
  camera
```

Refinement

$R_{\rm p} = 0.026$	1346 reflections
$R_{\rm wp} = 0.035$	157 parameters
$R_{\rm exp} = 0.014$	125 restraints
$R_{\rm B} = 0.064$	H-atom parameters not refined
S = 2.43	Preferred orientation correction:
Wavelength of incident radiation:	March-Dollase (Dollase, 1986)
1.54059 Å	direction of preferred orientati
Excluded region(s): none	100, texture parameter $r =$
Profile function: split-type pseudo-	1.038 (5)
Voigt (Toraya, 1986)	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N19-H19A···O32	0.90	2.06	2.93 (2)	165
N19−H19B···O36	0.90	2.18	3.04 (2)	159
N9-H9···O35 ⁱ	0.86	1.87	2.72 (3)	168
$O18-H18\cdots O32^{ii}$	0.82	2.42	3.15 (2)	148
$O18-H18\cdots O35^{ii}$	0.82	2.46	3.02 (2)	126
O33-H33···O35 ⁱⁱ	0.82	1.77	2.53 (2)	153
O34-H34···O32 ⁱⁱⁱ	0.82	1.87	2.58 (2)	144
O36-H36···O22	0.85	2.34	2.887 (15)	122
O36-H36···O29	0.85	2.00	2.80 (2)	155
$C21 - H21B \cdots O34^{iii}$	0.97	2.24	2.91 (2)	125

Cu $K\alpha_1$ radiation

Specimen shape: flat sheet

Specimen prepared at 101 kPa

Particle morphology: no specific

Specimen mounted in transmission

direction of preferred orientation

Specimen prepared at 295 K

 $\mu = 1.38 \text{ mm}^{-1}$ T = 295 K

 $15 \times 1 \times 1$ mm

mode

habit, light grey

Scan method: continuous

 $2\theta_{\min} = 5.0, 2\theta_{\max} = 75.0^{\circ}$

Increment in $2\theta = 0.01^{\circ}$

Symmetry codes: (i) $x + \frac{1}{2}$, $y - \frac{1}{2}$, z; (ii) -x, y, $-z + \frac{3}{2}$; (iii) -x, -y + 2, -z + 2.

Data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002); cell refinement: MRIA (Zlokazov & Chernyshev, 1992); data reduction: G670 Imaging Plate Guinier Camera Software; method used to solve structure: simulated annealing (Zhukov et al., 2001); program(s) used to refine structure: MRIA; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: MRIA and SHELXL97 (Sheldrick, 2008).

VVC and YAV acknowledge the International Centre for Diffraction Data (ICDD) for supporting this study (GiA 03-06).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2866).

References

- Brook, C. S., Chen, W., Dell'Orco, P. C., Katrincic, L. M., Lovet, A. M., Oh, C. K., Spoors, P. G. & Werner, C. (2005). US Patent No. 20050240027A1.
- Chen, W.-M., Zeng, L.-M., Yu, K.-B. & Xu, J.-H. (1998). Jiegou Huaxue, 17, 325–328.
- Chernyshev, V. V., Machon, D., Fitch, A. N., Zaitsev, S. A., Yatsenko, A. V., Shmakov, A. N. & Weber, H.-P. (2003). Acta Cryst. B59, 787–793.
- Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.
- Huber (2002). *G670 Imaging Plate Guinier Camera Software*. Huber Diffraktionstechnik GmbH, Rimsting, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Toraya, H. (1986). J. Appl. Cryst. 19, 440-447.
- Visser, J. W. (1969). J. Appl. Cryst. 2, 89–95.
- Yathirajan, H. S., Bindya, S., Sreevidya, T. V., Narayana, B. & Bolte, M. (2007). *Acta Cryst.* E63, 0542–0544.
- Zhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5–9.
- Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447-451.

supplementary materials

Acta Cryst. (2009). E65, o2020-o2021 [doi:10.1107/S1600536809029353]

Carvedilol dihydrogen phosphate hemihydrate: a powder study

V. V. Chernyshev, A. A. Machula, S. Y. Kukushkin and Y. A. Velikodny

Comment

Earlier, the crystal structures of two polymorphs of carvedilol free base have been reported (Chen *et al.*, 1998; Yathirajan *et al.*, 2007). Herein we report the crystal structure of the title compound (I), also known as carvedilol dihydrogen phosphate hemihydrate, Form I (Brook *et al.*, 2005).

In (I) (Fig. 1), all bond lengths and angles in the cation are comparable with those reported earlier for two monoclinic polymorphs of carvedilol free base (Chen *et al.*, 1998; Yathirajan *et al.*, 2007). The mean planes of tricycle and benzene ring form a dihedral angle of 87.2 (2)°. The crystalline water molecule is situated on a twofold rotational axis linking two cations *via* O—H…O and N—H…O hydrogen bonds (Table 1). The anions contribute to formation O—H…O and N—H…O hydrogen bonds (Table 1) between the anions and cations giving rise to three-dimensional hydrogen-bonding network.

Experimental

The title compound was synthesized in accordance with the known procedure, invented by Brook et al. (2005) for Form I.

Refinement

During the exposure, the specimen was spun in its plane to improve particle statistics. The monoclinic unit-cell dimensions were determined with the indexing program ITO (Visser, 1969), M_{20} =35, using the first 30 peak positions. The space group C2/c was chosen on the basis of systematic extinction rules and confirmed later by the crystal structure solution. The structure of (I) was solved by simulated annealing procedure (Zhukov *et al.*, 2001) and refined following the methodology described in details elsewhere (Chernyshev *et al.*, 2003) by the subsequent bond-restrained Rietveld refinement with the program MRIA (Zlokazov & Chernyshev, 1992). All non-H atoms were refined isotropically: two overall U_{iso} parameters were refined for the anion - one for P and one for all O atoms. All H atoms were placed in geometrically calculated positions and not refined. The diffraction profiles and the differences between the measured and calculated profiles are shown in Fig. 2.

Figures

Fig. 1. The molecular structure of (I) with the atomic numbering and 40% displacement spheres. H atoms are not shown.

Fig. 2. The Rietveld plot, showing the observed and difference profiles for (I). The reflection positions are shown above the difference profile.

3-(9*H*-carbazol-4-yloxy)-2-hydroxy-*N*-[2-(2- methoxyphenoxy)ethyl]propan-1-aminium dihydrogen phosphate hemihydrate]

Crystal data

$C_{24}H_{27}N_2O_4^+ H_2PO_4^- 0.5H_2O$	Z = 8
$M_r = 513.47$	$F_{000} = 2168$
Monoclinic, C2/c	$D_{\rm x} = 1.310 {\rm ~Mg~m}^{-3}$
Hall symbol: -C 2yc	Cu $K\alpha_1$ radiation, $\lambda = 1.54059$ Å
a = 26.600 (2) Å	$\mu = 1.38 \text{ mm}^{-1}$
<i>b</i> = 12.3767 (12) Å	T = 295 K
<i>c</i> = 16.5101 (15) Å	Specimen form: flat_sheet; particle morphology no specific habit; light grey
$\beta = 106.662 \ (11)^{\circ}$	$15 \times 1 \times 1 \text{ mm}$
V = 5207.2 (8) Å ³	Specimen preparation: pressure 101 kPa; temperature 295 K

Data collection

Guinier G670 diffractometer	Scan method: continuous
Radiation source: line-focus sealed tube	T = 295 K
Monochromator: Curved Germanium (111)	$2\theta_{min} = 5.00, 2\theta_{max} = 75.00^{\circ}$
Specimen mounting: thin layer in the specimen holder of the camera	Increment in $2\theta = 0.01^{\circ}$

Specimen mounted in transmission mode

Refinement

Refinement on <i>I</i> _{net}	157 parameters
Least-squares matrix: full with fixed elements per cycle	125 restraints
$R_{\rm p} = 0.026$	27 constraints
$R_{\rm wp} = 0.035$	H-atom parameters not refined
$R_{\rm exp} = 0.014$	Weighting scheme based on measured s.u.'s ?
$R_{\rm B} = 0.064$	$(\Delta/\sigma)_{\text{max}} = 0.004$
<i>S</i> = 2.44	Extinction correction: none
Excluded region(s): none	Preferred orientation correction: March-Dollase (Dollase, 1986); direction of preferred orientation 100, texture parameter $r = 1.038(5)$

Profile function: split-type pseudo-Voigt (Toraya, 1986)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.1090 (10)	0.7439 (16)	0.8662 (14)	0.096 (9)*
H1A	0.1218	0.6723	0.8585	0.115*
H1B	0.1339	0.7771	0.9146	0.115*
C2	0.1044 (9)	0.8122 (14)	0.7871 (12)	0.096 (9)*
H2	0.1110	0.8888	0.8012	0.115*
C3	0.1405 (11)	0.7694 (13)	0.7371 (13)	0.096 (9)*
H3A	0.1289	0.6980	0.7153	0.115*
H3B	0.1386	0.8167	0.6895	0.115*
C4	0.2317 (10)	0.7415 (15)	0.7495 (11)	0.078 (7)*
C5	0.2335 (8)	0.7825 (16)	0.6713 (14)	0.078 (7)*
Н5	0.2069	0.8273	0.6402	0.094*
C6	0.2761 (11)	0.7553 (13)	0.6398 (12)	0.078 (7)*
H6	0.2745	0.7766	0.5851	0.094*
C7	0.3201 (9)	0.6987 (17)	0.6859 (15)	0.078 (7)*
H7	0.3502	0.6922	0.6684	0.094*
C8	0.3156 (9)	0.6522 (16)	0.7609 (13)	0.078 (7)*
N9	0.3515 (8)	0.5885 (13)	0.8183 (10)	0.078 (7)*
H9	0.3797	0.5622	0.8107	0.094*
C10	0.3351 (9)	0.5734 (15)	0.8899 (14)	0.078 (7)*
C11	0.3572 (11)	0.5123 (16)	0.9629 (15)	0.078 (7)*
H11	0.3890	0.4766	0.9703	0.094*
C12	0.3304 (12)	0.5062 (17)	1.0244 (15)	0.078 (7)*
H12	0.3454	0.4682	1.0741	0.094*
C13	0.2814 (10)	0.5561 (14)	1.0128 (12)	0.078 (7)*
H13	0.2646	0.5522	1.0550	0.094*
C14	0.2580 (9)	0.6116 (13)	0.9379 (14)	0.078 (7)*
H14	0.2243	0.6393	0.9280	0.094*
C15	0.2854 (11)	0.6256 (15)	0.8773 (13)	0.078 (7)*
C16	0.2737 (10)	0.6768 (16)	0.7952 (12)	0.078 (7)*
O17	0.1930 (7)	0.7639 (11)	0.7893 (9)	0.078 (7)*
O18	0.0509 (8)	0.7940 (12)	0.7362 (9)	0.096 (9)*
H18	0.0479	0.8342	0.6957	0.144*
N19	0.0560 (8)	0.7353 (13)	0.8820 (11)	0.096 (9)*
H19A	0.0435	0.8022	0.8851	0.115*
H19B	0.0337	0.7015	0.8379	0.115*
C20	0.0576 (10)	0.6750 (16)	0.9617 (14)	0.096 (9)*
H20A	0.0807	0.7124	1.0098	0.115*
H20B	0.0718	0.6032	0.9592	0.115*
C21	0.0031 (11)	0.6657 (15)	0.9737 (12)	0.096 (9)*
H21A	0.0051	0.6343	1.0283	0.115*
H21B	-0.0133	0.7362	0.9701	0.115*
022	-0.0260 (7)	0.5974 (11)	0.9071 (8)	0.096 (9)*
C23	-0.0747 (10)	0.5587 (16)	0.9079 (13)	0.096 (9)*
C24	-0.0925 (12)	0.4644 (14)	0.8587 (14)	0.096 (9)*
C25	-0.1401 (9)	0.4201 (15)	0.8616 (15)	0.096 (9)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

-0.1524	0.3577	0.8309	0.115*
-0.1699 (10)	0.4678 (16)	0.9099 (12)	0.096 (9)*
-0.2032	0.4412	0.9062	0.115*
-0.1502 (9)	0.5542 (17)	0.9631 (14)	0.096 (9)*
-0.1677	0.5796	1.0006	0.115*
-0.1033 (11)	0.6023 (14)	0.9590 (12)	0.096 (9)*
-0.0911	0.6640	0.9907	0.115*
-0.0584 (8)	0.4261 (12)	0.8162 (9)	0.096 (9)*
-0.0784 (11)	0.3728 (16)	0.7357 (14)	0.096 (9)*
-0.0497	0.3514	0.7150	0.144*
-0.1008	0.4215	0.6961	0.144*
-0.0981	0.3101	0.7424	0.144*
-0.0045 (5)	1.0448 (8)	0.8733 (7)	0.063 (6)*
0.0094 (8)	0.9380 (12)	0.9182 (10)	0.124 (11)*
0.0409 (8)	1.0822 (11)	0.8416 (11)	0.124 (11)*
0.0373	1.0524	0.7960	0.186*
-0.0127 (8)	1.1325 (13)	0.9331 (10)	0.124 (11)*
-0.0244	1.1016	0.9678	0.186*
-0.0536 (9)	1.0330 (11)	0.7999 (9)	0.124 (11)*
0.0000	0.5716 (11)	0.7500	0.076 (7)*
-0.0103	0.5310	0.7836	0.114*
	-0.1524 -0.1699 (10) -0.2032 -0.1502 (9) -0.1677 -0.1033 (11) -0.0911 -0.0584 (8) -0.0784 (11) -0.0497 -0.1008 -0.0981 -0.0981 -0.0045 (5) 0.0094 (8) 0.0409 (8) 0.0373 -0.0127 (8) -0.0536 (9) 0.0000 -0.0103	-0.1524 0.3577 $-0.1699(10)$ $0.4678(16)$ -0.2032 0.4412 $-0.1502(9)$ $0.5542(17)$ -0.1677 0.5796 $-0.1033(11)$ $0.6023(14)$ -0.0911 0.6640 $-0.0584(8)$ $0.4261(12)$ $-0.0784(11)$ $0.3728(16)$ -0.0981 0.3101 -0.0981 0.3101 $-0.0049(8)$ $0.9380(12)$ $0.0094(8)$ $0.9380(12)$ $0.0127(8)$ $1.1325(13)$ -0.0244 1.1016 $-0.0536(9)$ $1.0330(11)$ 0.0000 $0.5716(11)$	-0.1524 0.3577 0.8309 $-0.1699(10)$ $0.4678(16)$ $0.9099(12)$ -0.2032 0.4412 0.9062 $-0.1502(9)$ $0.5542(17)$ $0.9631(14)$ -0.1677 0.5796 1.0006 $-0.1033(11)$ $0.6023(14)$ $0.9590(12)$ -0.0911 0.6640 0.9907 $-0.0584(8)$ $0.4261(12)$ $0.8162(9)$ $-0.0784(11)$ $0.3728(16)$ $0.7357(14)$ -0.0497 0.3514 0.7150 -0.1008 0.4215 0.6961 -0.0981 0.3101 0.7424 $-0.0045(5)$ $1.0448(8)$ $0.8733(7)$ $0.0094(8)$ $0.9380(12)$ $0.9182(10)$ $0.0127(8)$ $1.1325(13)$ $0.9331(10)$ -0.0244 1.1016 0.9678 $-0.0536(9)$ $1.0330(11)$ $0.7999(9)$ 0.0000 $0.5716(11)$ 0.7836

Geometric parameters (Å, °)

1.51 (2)	C12—C13	1.40 (4)
1.52 (2)	C13—C14	1.40 (3)
1.52 (2)	C14—C15	1.41 (3)
1.509 (18)	C15—C16	1.45 (3)
1.40 (3)	C20—C21	1.52 (4)
1.42 (3)	C23—C28	1.40 (3)
1.45 (3)	C23—C24	1.42 (3)
1.38 (3)	C24—C25	1.39 (4)
1.43 (2)	C25—C26	1.41 (3)
1.38 (3)	C26—C27	1.39 (3)
1.44 (3)	C27—C28	1.40 (4)
0.82	C1—H1A	0.97
0.82	C1—H1B	0.97
0.82	С2—Н2	0.98
0.85	С3—НЗА	0.97
0.85	С3—Н3В	0.97
1.39 (3)	С5—Н5	0.93
1.38 (3)	С6—Н6	0.93
1.51 (3)	С7—Н7	0.93
1.50 (3)	C11—H11	0.93
0.86	C12—H12	0.93
0.90	С13—Н13	0.93
0.90	C14—H14	0.93
1.53 (3)	C20—H20B	0.97
1.53 (3)	C20—H20A	0.97
	1.51 (2) 1.52 (2) 1.52 (2) 1.509 (18) 1.40 (3) 1.42 (3) 1.45 (3) 1.43 (2) 1.38 (3) 1.43 (2) 1.38 (3) 1.44 (3) 0.82 0.82 0.82 0.82 0.85 1.39 (3) 1.38 (3) 1.51 (3) 1.50 (3) 0.90 0.90 1.53 (3) 1.53 (3)	1.51 (2) $C12-C13$ $1.52 (2)$ $C13-C14$ $1.52 (2)$ $C14-C15$ $1.509 (18)$ $C15-C16$ $1.40 (3)$ $C20-C21$ $1.42 (3)$ $C23-C28$ $1.45 (3)$ $C23-C24$ $1.38 (3)$ $C24-C25$ $1.43 (2)$ $C25-C26$ $1.38 (3)$ $C26-C27$ $1.44 (3)$ $C27-C28$ 0.82 $C1-H1A$ 0.82 $C2-H2$ 0.85 $C3-H3B$ $1.39 (3)$ $C5-H5$ $1.38 (3)$ $C6-H6$ $1.51 (3)$ $C7-H7$ $1.50 (3)$ $C11-H11$ 0.86 $C12-H12$ 0.90 $C13-H13$ 0.90 $C14-H14$ $1.53 (3)$ $C20-H20B$ $1.53 (3)$ $C20-H20A$

C4—C16	1.41 (3)	C21—H21B	0.97
C4—C5	1.40 (3)	C21—H21A	0.97
C5—C6	1.42 (4)	C25—H25	0.93
C6—C7	1.39 (3)	C26—H26	0.93
С7—С8	1.40 (3)	С27—Н27	0.93
C8—C16	1.42 (4)	C28—H28	0.93
C10—C15	1.43 (4)	С30—Н30А	0.96
C10—C11	1.40 (3)	С30—Н30В	0.96
C11—C12	1.40 (4)	С30—Н30С	0.96
O34—P31—O35	109.7 (13)	O29—C24—C25	128.2 (18)
O32—P31—O35	110.0 (11)	C24—C25—C26	121.3 (19)
O32—P31—O33	109.2 (13)	C25—C26—C27	121 (2)
O32—P31—O34	111.5 (11)	C26—C27—C28	118 (2)
O33—P31—O34	106.4 (12)	C23—C28—C27	120.8 (19)
O33—P31—O35	110.0 (12)	N19—C1—H1B	109.77
C3—O17—C4	117.0 (16)	N19—C1—H1A	109.78
C21—O22—C23	120.0 (18)	H1A—C1—H1B	108.18
C24—O29—C30	120 (2)	C2—C1—H1A	109.73
C2—O18—H18	103.23	C2—C1—H1B	109.71
Р31—О33—Н33	106.53	С1—С2—Н2	111.50
P31—O34—H34	105.88	С3—С2—Н2	111.46
H36—O36—H36 ⁱ	107.52	O18—C2—H2	111.57
C8—N9—C10	110 (2)	O17—C3—H3A	109.57
C1—N19—C20	113.1 (18)	С2—С3—НЗА	109.48
С10—N9—H9	125.12	С2—С3—Н3В	109.48
C8—N9—H9	125.17	O17—C3—H3B	109.59
C1—N19—H19B	108.95	НЗА—СЗ—НЗВ	108.18
H19A—N19—H19B	107.79	С4—С5—Н5	120.24
C20—N19—H19B	108.92	С6—С5—Н5	120.11
C1—N19—H19A	108.90	С7—С6—Н6	118.16
C20—N19—H19A	109.00	С5—С6—Н6	118.07
N19—C1—C2	109.6 (19)	С6—С7—Н7	122.62
C1—C2—C3	111.1 (17)	С8—С7—Н7	122.59
O18—C2—C1	103.5 (18)	C10-C11-H11	120.69
O18—C2—C3	107.3 (16)	С12—С11—Н11	120.78
O17—C3—C2	110.5 (16)	C11—C12—H12	119.21
O17—C4—C16	116.1 (17)	C13—C12—H12	119.26
C5—C4—C16	118 (2)	C12—C13—H13	120.07
O17—C4—C5	125.8 (19)	C14—C13—H13	120.07
C4—C5—C6	120 (2)	C13—C14—H14	120.01
C5—C6—C7	123.8 (19)	C15—C14—H14	119.97
C6—C7—C8	115 (2)	C21—C20—H20A	109.42
N9—C8—C16	108.4 (18)	C21—C20—H20B	109.44
C7—C8—C16	123 (2)	H20A—C20—H20B	107.96
N9—C8—C7	128 (2)	N19—C20—H20A	109.38
N9—C10—C11	131 (2)	N19—C20—H20B	109.33
N9—C10—C15	108.6 (18)	O22—C21—H21A	110.63
C11—C10—C15	121 (2)	C20—C21—H21B	110.63

supplementary materials

C10-C11-C12	119 (2)	O22—C21—H21B	110.54
C11—C12—C13	122 (2)	C20-C21-H21A	110.55
C12—C13—C14	120 (2)	H21A—C21—H21B	108.76
C13—C14—C15	120 (2)	C26—C25—H25	119.37
C10-C15-C16	106 (2)	C24—C25—H25	119.29
C14—C15—C16	135 (2)	С25—С26—Н26	119.69
C10-C15-C14	119.1 (19)	С27—С26—Н26	119.59
C4—C16—C8	120.1 (18)	С26—С27—Н27	120.79
C4—C16—C15	133 (2)	С28—С27—Н27	120.75
C8—C16—C15	107 (2)	C27—C28—H28	119.57
N19—C20—C21	111.3 (19)	C23—C28—H28	119.65
O22—C21—C20	105.7 (18)	O29—C30—H30B	109.47
O22—C23—C28	123.0 (19)	O29—C30—H30C	109.44
C24—C23—C28	121 (2)	H30A-C30-H30C	109.53
O22—C23—C24	116 (2)	H30B-C30-H30C	109.45
C23—C24—C25	117 (2)	H30A—C30—H30B	109.43
O29—C24—C23	114 (2)	O29—C30—H30A	109.50

Symmetry codes: (i) -x, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N19—H19A…O32	0.90	2.06	2.93 (2)	165
N19—H19B…O36	0.90	2.18	3.04 (2)	159
N9—H9…O35 ⁱⁱ	0.86	1.87	2.72 (3)	168
O18—H18····O32 ⁱ	0.82	2.42	3.15 (2)	148
O18—H18····O35 ⁱ	0.82	2.46	3.02 (2)	126
O33—H33····O35 ⁱ	0.82	1.77	2.53 (2)	153
O34—H34…O32 ⁱⁱⁱ	0.82	1.87	2.58 (2)	144
O36—H36···O22	0.85	2.34	2.887 (15)	122
O36—H36···O29	0.85	2.00	2.80 (2)	155
C21—H21B···O34 ⁱⁱⁱ	0.97	2.24	2.91 (2)	125
		2 12		

Symmetry codes: (ii) x+1/2, y-1/2, z; (i) -x, y, -z+3/2; (iii) -x, -y+2, -z+2.

